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Observations on ultrafast x-ray science

workshops and reports, along with successful operation of new sources
at APS, ALS, BESSY, SLS, SPPS, FLASH, etc., indicate that compelling
ultrafast x-ray science will be enabled by accelerator-based sources

several new x-ray FELS will soon become available

optical lasers with high-harmonic-generation and phase-stabilization
have indicated the potential of ultrafast, short-wavelength science

various proposals exist for R&D and construction of new ultrafast
X-ray sources, using crabing, slicing, seeded-FELs, ERLs, lasers, etc.

high peak and average power lasers will be available for manipulating
electron beams and seeding FELs, but accelerator-based x-ray sources
have unique capabilities beyond x-ray harmonics of lasers
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- Potential issue: excitation or damage of sample during
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probing of condensed matter by soft x-ray FELs
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- Spontaneous sources
Synchrotron slicing = 102 - 104 photons/pulse at 1-10 kHz

..80 how many x-rays are oo much or too little ?

Synchrotron crabing = 104 - 106 photons/pulse at 6 MHz
SPPS = 108 photons/pulse at 10 - 100 Hz
- FELs
LCLS = 102 photons at 120 Hz
GW peak power
* Laser harmonics
10-6 conversion in peak and average power (MW peak / uW average)

A range of new sources and clever techniques are needed
- amplification of scattering by use of crystals
- dispersive spectroscopy for parallel measurements
- zone plate optics, better detectors, PEEM, diffractive imaging
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Recent Berkeley Workshop

"Science for a New Class of Soft X-ray Light Sources”
-2

Focused on 5 areas:

O

Atomic, Molecular and Optical Physics
Chemical Physics

Correlated Materials

Magnetization and Spin Dynamics
Nanoscience and Coherence



Example of dynamic SXR spectroscopy:
K-edge absorption of high-T liquid carbon
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Inelastic hard x-ray scattering measures dynamic density and temperature

Schematic of X-ray scattering signal

Compton  «—-h#mc2__g Rayleigh 4
Scattering Coherent
~ f(zweakly-bound) SCatterlng
~ f(zztightly-bound)
Compton
Scattering
~ f(Zfree,neaTe)

-—|
it ~(2k, T,/mc?) " 0

From scattering intensities, we determine:

- electron motion
» collective motion (plasmons, ion acoustic wave)

- free and bound electrons
- screening and collisions

By varying the scattering angle, we determine:

- collective modes and non-collective behavior
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‘ X-ray Thomson scattering
uses x-ray backlighters to study compressed Be

Laser plasma x-ray source
used to measure x-ray scattering on compressed Be
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- measured plasmon scattering from shock compressed Be
- position of the plasmon resonance yields density
n=1x102 cm3, T =10 eV at 3 ns
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Disordering of a lattice through bond-breaking
observed at short times through 8 keV diffraction
changes at the SPPS

- 'ro

‘ : ' * (111) and (220) reflections measured

* non-thermal melting observed

- more complex system will require more photons

SPPS Collaboration



Intense x-ray fluxes from LCLS will enable real-time in situ
measurements of microstructure evolution at high pressure

What is the timescale of the bcc-hcp phase transformation in Fe?

Current measurement

limited to timescales >> psec

Simulations predict subpicosecond
phenomena observable using LCLS

bcc static
bcc compressed

hcp phase

[Kalantar et al., Phys. Rev. Lett. (2005)]

Kadau et al., Science (2002).
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A Recent Berkeley Workshop
ey "Science for a New Class of Soft X-ray Light Sources”
vLig

Atomic, Molecular and Optical Physics
and
Chemical Physics Breakouts

* attosecond electron dynamics

» probe and control of electron correlation

* evolution of excited state dynamics in the gas phase
* extreme non-Born-Oppenheimer chemistry

* non-adiabatic control schemes

* 2-d x-ray correlation spectroscopy
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Coherent ultrafast core-hole cormelation spectroscopy: x-ray annlogies of
mudtidimensional NMR

Igoe V. Schiweigest and Shared Muboenel
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f"\l . Workshop Conclusions “Science for a New Class
\\"'l of Soft X-ray Light Sources”

BERKELEY LAB

e Function relies on structure, bonding, and dynamics
- soft x-rays reveal bonding and structure
- hard x-rays reveal atomic positions

® Energy and information flow utilize ultrafast timescales
- beat timescales for dissipation
e.g., vision, photosynthesis
- allow multimode excitation to dissipate energy
e.g., DNA, damage
- speed, competing rates, and quantum pathways
critical to functional optimization

e Coherent radiation implies longitudinal and transverse coherence for
- high resolution spatial imaging and spectroscopy

- high peak and high average power for non-linear measurements

e Imaging matter and energy flow will utilize additional IR to x-ray radiation
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Requirements for new light sources are challenging

* Tunable
- Spectroscopy, imaging, and near resonance scattering
- Selectable pulse length
» Attosecond science for timescales of electron-electron correlation
* Longer (time-BW-limited) pulses required for high resolution
- Selectable pulse energy and repetition rate
* Maximize data and S/N, and minimize damage
* Multiple wavelengths and precision delays
* Beam quality
» Coherence and stability
- Amplitude and phase controlled pulses
- Synchronized pumps
+ THz, IR, optical, magnetic - to drive non-equilibrium structures
* Pressure, femperature, electronic, and phonon excitation beyond ambient
* Induce nanoscale structure with transient gratings
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cecer] \’“ A vision for a future light source facility

HIGH REP-RATE, SEEDED, VUV — SOFT X-RAY FEL ARRAY

* Independent array of configurable FELs
» Control of electrons: seeded, attosecond, ESASE
» Control of x-rays: wavelength, pulse duration, polarization

Beam l,
Phase-space Beam distribution and
manipulation individual beamline tuning

PO T
|
Low-emittance, Laser systems,
high rep-rate timing &

electron gun synchronization
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Cerec) : Performance goals of a SXR FEL

FELs WITH THREE MODES OF OPERATION

Short-pulse High-resolution Sub-femtosecond
beamlines beamlines beamlines
Wavelength range (nm) ~200 -1 ~200 — 1 ~40 -1
Photon energy (eV) 6 — 1240 6 — 1240 30 -1240
Repetition rate (kHz) 100 100 1-100
Peak power (GW) 1 1 0.1-0.3
Photons/pulse (@1 nm) 5x10"" (in 100 fs) 2.5x10' (in 500 fs) 1.5x108 (in 100 as)
Timing stability (fs) 10 10 TBD
Pulse length (fs) 1-100 100 — 1000 0.1-1
Harmonics I few% I few% I few%
Polarization Variable, linear/circular |Variable, linear/circular |Variable, linear/circular
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Electron beam is 1.5 GeV, energy spread 100 keV, 250 A current, 0.25 micron emittance; laser seed is 100 kW at 32 nm; undulator period 1 cm
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ENERGY MODULATION FOLLOWED BY DISPERSIVE SECTION

Bunching of the electron beam

AEbeam AEbeam

Energy-dependent

path length Induced current

modulation in
the electron
beam
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MULTIPLE STAGES TO REACH SHORTER WAVELENGTHS

bunching time delay bunching
Seed laser chicane chicane chicane X-ray light
)"seed

J e /‘A‘
-"""' modulator radiator & Il modulator "pucilEs radiator
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Csonka 1980; Kincaid 1980; Bonifacio 1990; L.-H. Yu 1990
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Laser-sliced x-ray pulses from synchrotrons
are used as tunable soft and hard x-ray probes

30 ps electron_ <

bunch

magnets

; femtosecond
emtosecond electron bunch femtosecond x-rays

I [
e T — .|

electron-photon spatial separation bend magnet

interaction in wiggler dispersive bend beamline

Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996



/\l . New source performance comparison
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Summary of integrated photon flux needed
in condensed matter physics experiments

e angle resolved photoemission: volume datasets

- lel7 ph (20 - 100 eV)

® microscopy
- lel3 (280 - 1200 eV)

® spectro microscopy

- lel5 (280 - 1200 eV)
e time resolved microscopy

- lel6 ph (280 - 1200 eV)
e time resolved spectroscopy

- 1elO ph (280 - 1200 eV)

From H. Padmore
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Workshop “High Average Power Lasers
and High Harmonics”
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December 12, 2007

Discuss future possibilities for high average power lasers that could:

- drive high-peak and high-average power high-order harmonic sources

- be utilized for coherent soft x-ray science

- manipulate electron beams and seed FELs

- enable laser-based accelerators for applications including light sources




Quasi-phase matching at 300 eV in Ar

PRL 99, 143901 (2007)

R 5 . 7T LS . week ending
PHYSICAL REVIEW LETTERS 5 OCTOBER 2007

~ E9 photons/pulse/harmonic
@ 300 eV

~ E12 photons/sec
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Photon

Optimized HHG at longer drive wavelengths

Scaling of keV HHG photon yield with
drive wavelength

Ariel Gordon and Franz X. Kiirtner

18 April 2005 / Vol. 13, No. 8/ OPTICS EXPRESS 2947
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Rapid Progress of Ceramic Lasers Byer

(Ken-ichi Ueda - FMK1 Oct 9 2006) Group
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Largest Selection of Ultrafast Lasers

' e ' [ 0 ' '
% COHERENT. | Better Ultrafast, Everyday
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N LWFA-driven coherent VUV source

BERKELEY LAB

LBNL LWFA focusing < il , A=31nm
optics 1073 photons/pulse, 0.2 mJ/pulse

40TW, — (T
40fs, ||‘ ~3 cm —I-I—} Undulator AVAVAVA: 2
10"°W/em? “plasma TN VUV radiation

L b plasma
10 Hz @serbeam  channel 0.5 GeV, 2.18 cm period,

1018 cm3 10 KA 201S 220 periods, K=1.85

7 N
LWFA Electron Beam: 0.001
Beam Energy 0.5 GeV 5'7"!5'“'_'3;,‘3;:"""""""""'
Peak current 10 kA ~ :m
—-) i ——
Charge 0.2 nC 2 10| 5 k- see
Bunch duration, FWHM 20 fs F—————
. o ™ F 7.5 kA - SEEDED
Energy spread (slice) 0.25 % o f———
Norm. Emittance 1 mm-mrad 6 -
\ J e 109
r N N
Undulator Parameters: 0 L
Undulator type planar 0 10
Undulator period 2.18 cm ) ;
Number of periods 220 L E
Peak Field 1.02T 107 i
Undulator parameter, K 1.85 0 — ,'I = é —
Beta function (0.5 GeV 3.6m
\ O )

Leemans, et al (LBNL) Collaboration
with MPQ, Germany



Conclusions

Grand Challenge science requires a range of new x-ray sources

FLASH, LCLS, the ALS-slicing beamline, APS time-resolved beamlines, etc.
are growing new communities of scientists interested in the time domain

designs exist for high-power x-ray FELs, with flexible parameters and
multiple beamlines; R&D is needed

lasers and high harmonics will have sufficient power for compelling
experiments and for seeding coherent, x-ray FELs; R&D is needed

... but lasers (even at kW average powers and mW high-harmonics)

and crab/slicing sources will not rival average soft and hard x-ray power
from FELs, which have mA currents, GeV energies, and watts of coherent
x-rays for Grand Challenge experiments

Crabing and slicing sources have comparable flux to laser harmonics in
the soft x-ray, and greater flux in the hard x-ray

novel accelerator schemes may eventually become available to drive
electron accelerators for light source applications



